
atmosphere

Article

Multi-Scale Object-Based Probabilistic Forecast Evaluation
of WRF-Based CAM Ensemble Configurations

Andrew Wilkins, Aaron Johnson *, Xuguang Wang, Nicholas A. Gasperoni and Yongming Wang

����������
�������

Citation: Wilkins, A.; Johnson, A.;

Wang, X.; Gasperoni, N.A.; Wang, Y.

Multi-Scale Object-Based Probabilistic

Forecast Evaluation of WRF-Based

CAM Ensemble Configurations.

Atmosphere 2021, 12, 1630. https://

doi.org/10.3390/atmos12121630

Academic Editors: Yunheng Wang

and Avelino F. Arellano

Received: 4 November 2021

Accepted: 1 December 2021

Published: 6 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Meteorology, University of Oklahoma, Norman, OK 73072, USA; acwilkins@ou.edu (A.W.);
xuguang.wang@ou.edu (X.W.); ngaspero@ou.edu (N.A.G.); yongming.wang@ou.edu (Y.W.)
* Correspondence: ajohns14@ou.edu

Abstract: Convection-allowing model (CAM) ensembles contain a distinctive ability to predict con-
vective initiation location, mode, and morphology. Previous studies on CAM ensemble verification
have primarily used neighborhood-based methods. A recently introduced object-based probabilistic
(OBPROB) framework provides an alternative and novel framework in which to re-evaluate aspects
of optimal CAM ensemble design with an emphasis on ensemble storm mode and morphology
prediction. Herein, we adopt and extend the OBPROB method in conjunction with a traditional
neighborhood-based method to evaluate forecasts of four differently configured 10-member CAM en-
sembles. The configurations include two single-model/single-physics, a single-model/multi-physics,
and a multi-model/multi-physics configuration. Both OBPROB and neighborhood frameworks
show that ensembles with more diverse member-to-member designs improve probabilistic forecasts
over single-model/single-physics designs through greater sampling of different aspects of forecast
uncertainties. Individual case studies are evaluated to reveal the distinct forecast features responsible
for the systematic results identified from the different frameworks. Neighborhood verification,
even at high reflectivity thresholds, is primarily impacted by mesoscale locations of convective and
stratiform precipitation across scales. In contrast, the OBPROB verification explicitly focuses on
convective precipitation only and is sensitive to the morphology of similarly located storms.

Keywords: ensemble; convection-allowing; verification

1. Introduction

Numerical weather prediction (NWP) since the early 2000s has benefitted from ad-
vances in computational resources that allow the routine use of high-resolution, convection-
allowing models (CAMs) [1–5]. More recently, increasing emphasis has been placed on
convection-allowing ensembles (CAEs) rather than deterministic CAM forecasts [6–18].
For example, [7] demonstrate that simple, accessible post-processed products can improve
both the qualitative interpretations and quantitative reliability of CAE high precipitation
and severe weather forecasts. The authors of [14] showed that the underdispersion of
CAE forecasts can be improved through the incorporation of land surface model (LSM)
perturbations and indicated the need for including such perturbations in CAE designs. Fur-
thermore, [17] found that multi-model and multi-physics CAE designs improve forecasts
of mesoscale precipitation location, relative to single-model, single-physics designs.

These advances in understanding the impacts of CAE design choices on forecast
aspects such as mesoscale precipitation location motivate further consideration of the CAE
design impacts on other aspects of the forecast such as storm mode and morphology. Exper-
iments comparing different CAE designs in convective events have previously emphasized
spatial coverage through neighborhood-based verification methods (e.g., [6,7,9,17,19,20])
or storm morphology through subjective evaluations (e.g., [21]). Neighborhood-based
methods provide an improved framework over traditional gridpoint-based methods, as
high amplitude features are considerably less sensitive to spatial displacements [22]. How-
ever, the inherent smoothing impact of the neighborhood-based approach, which provides
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advantages in terms of reduced sensitivity to small scale spatial displacements, also has
the impact of losing sensitivity to convective scale features such as precise initiation loca-
tions, storm mode, and morphology, which occurs on scales that are smoothed out during
neighborhood verification [18,23].

Considering the importance of storm mode for anticipating severe weather in op-
erational forecasting settings, new object-based techniques have been developed to ad-
dress the need for objective evaluation of CAM forecasts of storm mode and morphology.
Object-based frameworks have been documented to alleviate certain limitations of the
neighborhood-based framework by retaining convective scale details while providing
objective information about forecast aspects of interest in the context of deterministic CAM
forecasts [18,24–32]. However, ensemble storm morphology forecasts with different CAE
configurations have yet to be evaluated directly through such objective verification metrics.
A suitable framework for objectively evaluating probabilistic CAE forecasts of storm mode
and morphology, denoted as object-based probabilistic (OBPROB) verification, was recently
developed and applied in [18]. The OBPROB framework is applied in the present study to
evaluate forecasts with different CAE design configurations.

Explicitly forecasted in CAEs, probabilistic forecasts of storm mode and morphology
require uncertainty of the physical processes that are closely related to their develop-
ment [33] to be properly sampled in the ensemble design. Some past studies have relied
on lateral boundary condition (LBC) and initial condition (IC) perturbations within a
single-model, single-physics ensemble to sample forecast uncertainty and achieve member-
to-member spread [8,34,35]. However, many studies verifying CAE forecasts have found
that single-physics ensembles still lack aspects of forecast spread needed to more accurately
represent forecast uncertainty [11,33,36,37]. To improve ensemble spread, the incorpora-
tion of physics parameterization diversity within the ensemble has been found to more
adequately distribute latent heating profiles [33] and associated cold pool evolution [11].
Therefore, it is hypothesized that a larger variance of variables connected to predicted
storm morphology provided by a multi-physics ensemble design will result in improved
storm morphology spread and lead to improved sampling of forecast uncertainty related
to these convective scale details.

A second method for maintaining spread in CAE design is related to dynamical core
diversity. In a multi-model ensemble, members are comprised of two or more dynamical
cores [10,17,38–42]. Similar to a multi-physics design, the use of multiple dynamical cores
in a single ensemble forecasting system has been found to be advantageous with respect
to single-model ensembles due to better sampling of flow uncertainty [41]. However,
the means by which uncertainty is generated is different for multi-model and multi-
physics ensembles: multi-model ensembles generate uncertainty through both physics and
numerical schemes, whereas multi-physics ensembles grow uncertainty solely through the
physics parameterizations [43]. The additional spread from the dynamical core diversity
can be desirable in a forecasting context; however, [17] notes that the clustering of forecasts
can negatively impact a multi-model ensemble forecast. Translating these findings to a
convective scale forecast, it is hypothesized that a multi-model ensemble will improve
upon constituent model forecasts of storm morphology due to an increased sampling of
uncertainty and better representation of error growth.

The purpose of this study is to objectively evaluate the impacts of ensemble design
choices on probabilistic forecasts of convective mode and morphology using a newly
extended OBPROB technique. In turn, the further developments to OBPROB are expected
to improve its usefulness in operational convective forecasting settings. In furtherance
of this purpose, a comparison between the extended OBPROB and neighborhood-based
verification is used to highlight the impacts of CAE design on the forecast aspects verified
by both of these different methods and provide a more comprehensive evaluation of the
CAE designs than either method by itself can provide. A better understanding of ensemble
design choices and their impacts on forecasts of storm morphology can be gleaned through
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such explicit evaluation of both the ensemble storm morphology forecasts via OBPROB
and the mesoscale precipitation location forecasts via the neighborhood-based approach.

The rest of the paper is organized as follows. Section 2 describes the OBPROB method
in full, including object definition, matching, and probabilities, in addition to an extension
to separately evaluate objects of different spatial scale that is introduced in this study.
Section 3 describes the ensembles used, ten retrospective case studies, and the verification
metrics to be shown in the results. Section 4 describes the results, including objective
verification, subjective interpretation, and comparison to neighborhood-based results.
Then, the main conclusions are discussed in Section 5.

2. OBPROB Methodology

The OBPROB method described in [18] is adopted herein to assess forecast perfor-
mance with different CAE designs. The convective mode of modeled storms is essential
to severe weather forecasting [44–47]. An advantage of the OBPROB technique is that
information on the convective mode is retained in the objective verification. The OBPROB
verification procedure starts with defining objects; then, it moves to matching objects, and
it finishes with object probabilities and verification.

2.1. Object Definition

Object definition in this study is similar to the method outlined in [18]. First, a 6 km
(two-grid point) Gaussian smoother is applied to ensemble reflectivity fields to reduce grid-
scale noise while retaining convective scale features of interest to the storm morphology
forecast. Then, objects are defined using a predefined dBZ threshold above which all
closed contoured values are outlined. Afterwards, for each object defined, attributes are
calculated, including object area, which is the total number of grid points within the object,
object longest axis (i.e., length), object aspect ratio (i.e., length divided by width), and object
centroid location. The objects that contain an area less than 42 grid points are omitted to
remove any objects with an approximate diameter below the effective resolution of the
ensemble [18,48] and are unlikely to represent coherent and meaningful storms of interest
to severe weather forecasters.

2.2. Object Matching

As in [18], the object matching process follows a simple application of interest func-
tions [26] to define the similarity of object attributes. Figure 1 shows the shape of the
interest functions used herein with e-folding values of 200 km for object centroid distance
(Figure 1a), 0.33 for object area (shown as 1.0–0.33 since larger ratios indicate larger interest;
Figure 1b), and 0.5 for object aspect ratio (Figure 1c). In accordance with subjective inter-
pretation by the author and participants in the HWT (Hazardous Weather Testbed), these
parameters have been selected to provide realistic object matching, including a change
in the aspect ratio e-folding value from 0.2 (used in [18]) to 0.5 (Figure 1c). Based on two
objects’ individual object attribute interest values, a total interest, I, is calculated:

Itotal = f a1 ∗ f a2 ∗ f a3. (1)

From Equation (1), as in [18], total interest can be defined as the product of each
individual attribute interest value, f a. If a pair of objects’ total interest exceeds that of a
predefined threshold, the two objects are considered a match (i.e., they represent a storm
that would be interpreted similarly in a forecasting context). Here, we use a matching
threshold of 0.35. This value is adjusted from [18], which used a matching threshold of 0.2.
This adjustment corresponds to a change from using the difference of object aspect ratios
to the ratio of object ratios (similar to how area interest is calculated) based on improved
subjective performance with this change found subjectively by the authors.
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Figure 1. Interest functions to define similarity (i.e., interest) of the (A) centroid location, (B) area,
and (C) aspect ratio attributes between two objects. E-folding values are marked by a black line.

2.3. Object Probabilities

The OBPROB method assigns object probabilities that concisely represent the un-
certainty of all potential storm modes predicted within the ensemble. The step-by-step
method follows [18] and consists of the following steps:

1. Compile all forecasted objects into a single array with corresponding probabilities
equaling the fraction of members with a matching object.

2. Sort object probabilities in descending order, with ties in probability going toward the
object with highest average total interest from the matching object in other members.

3. Plot the highest probability object.
4. Remove the highest probability object, in addition to all associated matching objects

from the total array of objects, giving a new, shortened array.
5. Repeat steps 2–4 until no objects remain in the array.

Figure 2L highlights a key limitation of neighborhood-based forecasts resulting from
the smoothing of convective scale details, as a singular high probability contour extends
from Minnesota through Kansas, while an object-based paintball plot (Figure 2K), which
plots a simple overlay of each individual member forecast onto a single plot, more explicitly
shows that two separate linear squall lines are forecasted. The OBPROB plot (Figure 2M)
can be interpreted similarly to the paintball plot. However, a key difference is the simplicity
of the OBPROB plot, since redundant objects are plotted only once (i.e., the 80% probability
red object in Nebraska had eight out of 10 members with a matching object, leaving
eight objects to be plotted once, as represented by the red Nebraska object). Additionally,
Figure 2M shows that the OBPROB plot still retains low probability objects, such as the
blue object in western Nebraska. Thus, the OBPROB plot, while accelerating subjective
interpretation of explicitly resolved storm morphology ensemble forecasts, can be used for
objective verification of the ensemble distribution of storm objects in terms of their mode
and morphology.
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Figure 2. (A–J) Ten-member Nonhydrostatic Multiscale Model on the B grid (NMMB) ensemble
forecast initialized 00 Z, 7 July 2016, valid at 06 Z 7 July 2016, (K) corresponding paintball, (L) neigh-
borhood maximum ensemble probability (NMEP), and (M) OBPROB plots.

2.4. New Extensions of OBPROB Method

The OBPROB method described in [18] was also further extended in the present
study to include a bias correction component, to filter stratiform objects, and to separately
evaluate objects on different spatial scales including single-cell, multi-cell, and mesoscale
organized objects (denoted by meso-gamma, meso-beta, and meso-alpha, respectively).

The first innovation in the OBPROB methodology for this study was accounting
for model bias in reflectivity fields. Subjective analysis revealed the need to adjust for
model reflectivity bias, as certain physics schemes necessitated a method of accounting for
the different reflectivity values characteristic of robust convection in different ensemble
members. Table 1 details a hypothetical example of the technique used, which is the
same method developed and used in [49]. Here, we consider the observation reflectivity
distribution, locating the percentile at which 40 dBZ occurs, which is the value that is
used to define observation objects in this study. Then, we take the observation reflectivity
percentile and apply it to the forecast reflectivity distribution, finding the corresponding
forecasted dBZ value at the same percentile. This effective bias correction was performed
separately for each forecast hour to account for a diurnal variation of bias and for each
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model configuration, including separate bias correction for different members with different
physics configuration. The end result led to more continuous object matching from member
to member, in addition to directly justifiable comparisons to observation objects and
their attributes.

Table 1. Demonstration of bias correction procedure. Observed value of 40 dBZ is highlighted in
bold to indicate the value selected for object definition.

Observations
% dBZ

Forecasts
% dBZ

100 60 100 70
95 50 95 60
90 45 90 50
85 40 85 45
80 35 80 40
75 30 75 35

Since this study has a specific focus on verification of storm mode and morphology, the
second innovation to the OBPROB method included stratiform observation object filtering.
Illustrated in Figure 3, a radar bright band effect was seen to generate observation objects
not corresponding to robust convection (Figure 3a). Such objects are filtered out through
the use of a 46 dBZ threshold criterion for the 95th percentile of within-object reflectivity.
This threshold was determined by evaluating the within-object reflectivity distributions of
subjectively categorized convective and stratiform objects. The result allows for a greater
focus on verifying convective storm mode and morphology (Figure 3b).

Figure 3. OBPROB observation object plots (A) before stratiform object filtering and (B) after
stratiform object filtering. Observation object colors indicate convective scale category. Maroon
objects correspond to meso-alpha or mesoscale organized convection, cyan objects represent meso-
beta or multi-cell convection, and blue objects signify meso-gamma or single-cell convection.

The final innovation in the OBPROB method included the separation of forecast
objects based on a convective organization scale (i.e., single-cell, multi-cell, and mesoscale
organized). It is expected that attributes such as the spatial location, size, and shape of
largely organized convective systems are much more predictable than attributes for discrete,
loosely organized convection [50–53]. Prior works on convective organization [54] suggest
there are different dynamical complexities at different convective organization scales. Here,
we categorize the scale of organization based on the object longest axis length and choose
bounds on three categories to evenly distribute the sample size across the three categories.
Category bounds are 45 km (15 grid points) and 75 km (25 grid points), where objects
containing a longest horizontal axis less than 45 km are loosely considered as single-cell,
between 45 and 75 km are multi-cell, and greater than 75 km are mesoscale organized.
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Objects of mesoscale organized convective systems, multi-cell systems, and single-
cell systems are verified separately with varying verification techniques appropriate for
each scale. Figure 4 illustrates the differing verification methods for each category. For
mesoscale organized systems (Figure 4a), the novel OBPROB method is used solely, as
some predictability of storm mode and morphology is expected. For smaller, less organized
convection (i.e., multi-cellular and single-cellular), object probabilities are returned to
grid point space through a Gaussian smoother applied to the OBPROB probabilities for
objects in that size category (Figure 4b,c). Both meso-beta and meso-gamma scales use a
Gaussian radius of 10 grid points (30 km), which was subjectively shown to best represent
realistic probabilities.

Figure 4. Plotting examples of (A) meso-alpha (mesoscale organized) objects, (B) meso-beta (multi-
cell) objects, and (C) meso-gamma (single-cell) objects. Meso-alpha objects use the OBPROB method,
while meso-beta and meso-gamma use a Gaussian smoothed contour plot of object probabilities.

3. Experiment Design
3.1. Experiment Description

Four ensemble-to-ensemble comparisons from four different ensembles are conducted
to address the impacts that ensemble design has on storm mode and morphology forecasts,
as outlined in Tables 2 and 3. Each ensemble consists of ten members (a control member and
nine re-centered EnKF perturbations) initialized from the final EnVar analysis described
in [17]. Of the four ensembles listed in Table 2, NMMB and ARW-SP are single-model,
single-physics designs. NMMB uses Ferrier–Aligo microphysics [55], Mellor–Yamada–
Janjic (MYJ) boundary layer physics [56], and a NOAH land surface model scheme [57].
ARW-SP uses Thompson microphysics [58,59], Mellor–Yamada–Nakanishi–Niino (MYNN)
boundary layer physics [60], and the RUC land surface model scheme [61]. ARW-MP is a
multi-physics design using four different microphysics schemes, three planetary boundary
layer (PBL) schemes, and two land-surface model (LSM) schemes. The four microphysics
schemes included in ARW-MP are Thompson, the National Severe Storms Laboratory
(NSSL) bulk two-moment scheme [62], the Morrison two-moment scheme [63], and the
P3 scheme [64]. ARW-MP PBL parameterizations consist of MYJ, MYNN, and the Yonsei
University Scheme (YSU; [65]). Finally, the LSM schemes in ARW-MP are NOAH and
RUC. The fourth ensemble, MM (multi-model), is composed of five members from NMMB
and ARW-SP. Since MM consists of NMMB and ARW-SP members, corresponding physics
parameterizations are different in the NMMB and ARW-SP members of MM.
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Table 2. Ensembles and their design. The first column shows the name of the ensemble configuration.
The second column shows the WRF dynamical core(s) used for that ensemble. The third column
shows the member numbers used to identify ensemble members with particular configuration details.
The fourth column shows the microphysics parameterization scheme used, the fifth column shows
the Planetary Boundary Layer Scheme (PBL) used, and the sixth column shows the Land Surface
Model (LSM) used. All ensembles use a model grid spacing of 3 km.

Ensemble Dynamical
Core

Member
Number Microphysics PBL LSM

NMMB NMMB 0–9 Ferrier–Aligo MYJ NOAH
ARW-SP ARW 0–9 Thompson MYNN RUC

MM
NMMB 0–4 Ferrier–Aligo MYJ NOAH

ARW 5–9 Thompson MYNN RUC

ARW-MP ARW

0 Thompson MYNN RUC
1 Thompson MYJ NOAH
2 NSSL YSU NOAH
3 NSSL MYNN NOAH
4 Morrison MYJ NOAH
5 P3 YSU NOAH
6 NSSL MYJ NOAH
7 Morrison YSU NOAH
8 P3 MYNN NOAH
9 Thompson MYNN NOAH

Table 3. Ensemble-to-ensemble comparisons.

Ensemble Comparison Description

ARW-SP vs. NMMB (SMSP) Comparing how model and scheme choices impact
storm mode and morphology forecasts.

ARW-SP vs. ARW-MP (SPMP) Analyzing the effects of physic scheme diversity on
storm mode and morphology forecasts.

MM vs. NMMB (MMSM) Investigating the impacts of model dynamical core
diversity on storm mode and morphology forecasts.

ARW-MP vs. MM (MPMM)
Examining the relative effects that the model core and
physics scheme diversity have on storm mode and
morphology forecasts.

Each ensemble-to-ensemble comparison, outlined in Table 3, is devised to address
the specific impacts that certain ensemble design choices have on storm morphology
forecasts. By doing so, information ranging from how specific design choices affect the
forecast, to which environments certain designs are most well suited to forecast, can be
gleaned. As in [17], all ensembles are verified over ten retrospective case studies from
2015 to 2016 (Table 4). The selected cases make up a diverse set of synoptic scale forcing,
geographical location, time of day, and observed storm mode and morphologies, enhancing
the robustness of conclusions.

The object-based forecast evaluations are also compared to a neighborhood-based eval-
uation. Due to this study’s focus on extreme events (i.e., strong convective precipitation),
neighborhood maximum ensemble probability (NMEP) is the selected method, as recom-
mended by [20]. Previous studies suggest that optimally addressing model error may rely
on a combination of techniques to maintain appropriate ensemble diversity [13,17,66,67].
The use of multiple verification methods allows emphasis on the OBPROB method’s abil-
ity to effectively resolve convective scale details and provide unique probabilistic storm
morphology information.
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Table 4. Ten retrospective case studies from 2015 to 2016 and their storm morphology description.
State abbreviations in this table are as follows: TX is Texas, MO is Missouri, KS is Kansas, MS is
Mississippi, OH is Ohio, MN is Minnesota, NE is Nebraska, IL is Illinois, SD is South Dakota, IA is
Iowa, and Dakotas refers to North and South Dakota.

Case Date Initialization
Time

Synoptic
Forcing Case Description

16 May 2015 2300 UTC Strong
Single-cell dryline convection
growing upscale into long-lived
squall line from TX to MO

25 May 2015 1300 UTC Strong
Multi-cell convection with large
upscale growth into bowing squall
line in southeast TX

26 June 2015 0400 UTC Weak

Nocturnal, bowing MCS, KS to MO;
Nocturnal MCS Ohio Valley;
ensuing daytime convective
initiation

14 July 2015 1900 UTC Strong
Southward advancing QLCS with
associated cold front through decay,
MS and OH valley

11 September 2015 0100 UTC Moderate
Supercellular convection growing
upscale into squall line with
advancing cold front

22 May 2016 2300 UTC Moderate
Isolated convection becoming
outflow dominant QLCS, western
TX

17 June 2016 2000 UTC Weak
Southward advancing squall line
with bowing segment, southeastern
US

6 July 2016 0100 UTC Weak
Southward propagating squall line
growing in horizontal scale, MN to
IL; convective clusters in KS and NE

7 July 2016 0000 UTC Weak Supercellular convection growing
upscale into bowing MCS, SD to MO

10 July 2016 0400 UTC Weak
Single and multi-cellular convection
growing upscale into nocturnal
MCS, Dakotas to IA

3.2. Verification Methods

The verification of object-based and neighborhood-based forecasts is performed in
terms of the forecasted composite reflectivity fields. ARW member forecasts are bilinearly
interpolated to the NMMB grid to ensure consistency between the separately defined
NMMB and ARW domains in the MM ensemble. Observations are obtained from the Multi-
Radar Multi-Sensor (MRMS; [68]) composite reflectivity mosaic. Then, observation objects
are compared to the OBPROB forecast objects using the same interest functions and total
matching thresholds used for object matching within OBPROB. The neighborhood-based
verification uses neighborhood radii of four, eight, and sixteen to loosely correspond to the
scale-separated OBPROB forecasts.

As described above, the object-based verification is separated by storm organizational
scale (i.e., meso-alpha, meso-beta, meso-gamma). Meso-alpha scale object verification is
conducted using the Brier score (BS; [69]), while meso-beta and meso-gamma verification
is done using the fractions Brier score (FBS; [7,70]). Ensemble-to-ensemble comparisons are
reported as 1-BS1/BS2, where BS1 and BS2 are the BS of the two ensembles being compared,
effectively making reported values a BSS relative to the ensemble in comparison. Other
probabilistic object-based forecast metrics, including resolution, reliability and sharpness,
are also used to evaluate the full probability forecast. In addition, for the object-based
verification, ensemble object attribute climatologies are directly compared using normalized
attribute distributions for the attributes of object area, longest axis length, and aspect ratio.
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Similar to meso-beta and meso-gamma objects, neighborhood-based verification uses
a Brier skill score (BSS) computed from the FBS:

BSS = 1 − FBS/FBSref. (2)

In Equation (2), the FBS is calculated as a domain-wide mean squared difference
of NMEP fields and observed neighborhood probability fields. The FBS of the reference
forecast (FBSref) is calculated as a climatological probability of event occurrence averaged
over every grid point within the domain. The climatological probability is estimated as the
frequency of occurrence across the domain and across all cases considered in this study.

The statistical significance of probabilistic verification for both techniques follows the
one-sided permutation resampling method used in [10]. Each mesoscale organized object
is treated as a separate event and thus as independent samples themselves. Since each
ensemble is forecasting a slightly different set of “events”, permutation resampling at this
scale randomly reassigns objects to an ensemble instead of utilizing paired samples. For
multi-cell and single-cell objects, subsample subdomains are defined based on observation
object locations. Utilization of the previously used e-folding centroid location interest
distance for object matching (i.e., 200 km for meso-beta and 150 km for meso-gamma)
allows for overlapping subdomains to be deemed correlated and co-joined into one singular
subsample. The statistical independence of forecast errors in these regions was confirmed
by inspecting the correlation coefficient of randomly selected regions within the same
forecast case to reside at or below 0.3, indicating weak correlation. For the neighborhood-
based approach, a single daily contingency table sample from each case was used [17,71].

4. Results
4.1. Objective Verification
4.1.1. Object Attribute Distributions

Normalized distributions of each object attribute and every ensemble are shown in
Figure 5. Objects are aggregated over every forecast hour and case to reveal systematic
differences in object attributes among ensembles and between forecasts and observations.
Resampling tests are used to evaluate statistical significance at the 95% confidence level
of select differences seen subjectively in Figure 5. Cumulative differences for all objects
greater than and less than 300 km for object area are separately compared to 1000 resampled
differences where each of the 10 cases were sampled with replacement. Resampling tests
reveal that ensemble forecast distributions produce statistically significant differences
between forecast and observation attribute distributions. In particular, collective forecast
and observation distribution differences on either side of 300 grid points for object area
were statistically significantly different. Contrarily, object attribute distribution differences
from ensemble to ensemble did not result in statistically significant differences.

All SMSP object attribute plots suggest, in varying levels of clarity, that ARW-SP
forecasts additional small, short, circular objects compared to NMMB. For example, the
ARW-SP aspect ratio (Figure 5f) shows over-forecasting of larger aspect ratios above
≈0.6 and under-forecasting of smaller aspect ratios below ≈0.6. This is a result of the
over-forecasting of small, circular objects for ARW-SP. Based on Figure 5, all other ensemble-
to-ensemble comparisons show that the main contrasting qualities between forecasted
object attributes are confined to smaller, shorter, circular objects, indicating that ensemble
design choices predominantly affect attributes of the smaller scale objects. While the
addition of multiple physics parameterizations into the ensemble design improves object
forecast distributions, the addition of multiple dynamical cores does not. Additionally,
SPMP, MSMM, and MPMM all show ensemble object attribute distributions for larger,
mesoscale organized objects are generally similar. Therefore, the probabilistic verification
of forecasted storm mode and morphology at large scales is largely independent from
systematic object attribute distribution biases.
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Figure 5. Normalized ensemble object attribute distributions for each ensemble (rows). Left column:
Ensemble object area frequency distribution (solid) and observations (black, dashed) binned every 20
gpts. Center column: Ensemble object longest axis frequency distribution rounded to the nearest
grid point (solid) and observations (black, dashed). Right column: Ensemble object aspect ratio
distribution where each plotted point is averaged with +/− 2 nearest points. Panels show frequency
of objects of different areas for (A) NMMB, (D) ARW-SP, (G) ARW-MP, and (J) MM; frequency of
objects of different long axis length for (B) NMMB, (E) ARW-SP, (H) ARW-MP, and (K) MM; frequency
of objects of different aspect ratios for (C) NMMB, (F) ARW-SP, (I) ARW-MP, and (L) MM.

4.1.2. Probabilistic Verification and Forecast Spread

Figure 6 summarizes the OBPROB verification results. Each box in Figure 6 represents
a bin of three forecast hours to decrease sampling noise, as the sample sizes per forecast
hour are less in the OBPROB object space compared to a typical gridpoint space. Reliability
diagrams are also used to indicate the degree to which a forecast can be taken at face
value, and the BS resolution component is used to indicate the ability of the forecast to
differentiate separate events of varying frequencies of occurrence [72–76]. Perfect reliability
occurs when forecast probabilities match the observed frequency. Additionally, sharpness
plots show corresponding probability frequencies (counts) that fall into each probability
bin in the reliability diagram.
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Figure 6. Left column: Object-based Brier score averaged difference over all cases based on lead time and binned every
three forecast hours for (A) SP vs. NMMB, (C) MP vs. SP, (E) MM vs. NMMB, and (G) MM vs. MP. Values shown are
subtracted where red indicates added skill and blue indicates negative respective skill for the first ensemble listed in the title.
Overlay p-value colors indicate the presence of statistical significance (green) at the 80% confidence level. Right column:
Same as the left column except for neighborhood-based results for (B) SP vs. NMMB, (D) MP vs. SP, (F) MM vs. NMMB,
and (H) MM vs. MP. Meso-alpha, beta, and gamma correspond to a radius of 16, 8, and 4, respectively.

Figure 6a summarizes the results for the SMSP ensembles. For mesoscale organized
objects (top row), ARW-SP contains more skillful storm morphology forecasts for the first
two forecast bins but worse forecasts thereafter. The greater ARW-SP skill at early lead
times is statistically significant (Figure 6a), while the times where NMMB contains better
verification are not statistically significant, which is likely due to the limited sample size
of objects from 10 forecasts. Object-based reliability diagrams (Figure 7) show that the
advantage at early lead times of ARW-SP corresponds to a reduced frequency of high
probability objects (Figure 7d), which tend to have relatively poor reliability (Figure 7a).
At the multi-cell and single-cell scales, a more uniform result across forecast times shows
NMMB to have higher skill. The NMMB advantages at the meso-beta and meso-gamma
scales corresponds to better reliability than ARW-SP (Figure 7b,c). The neighborhood-based
verification of the SMSP ensembles (Figure 6b) yields similar results as OBPROB at meso-
alpha scales, with ARW-SP more skillful at early lead times and NMMB more skillful at
late lead times. At smaller convective organization scales (meso-beta and meso-gamma),
neighborhood verification largely contrasts with OBPROB, as ARW-SP has greater skill



Atmosphere 2021, 12, 1630 13 of 24

up until late lead times. These results suggest that object-based and neighborhood-based
methods are sensitive to separate aspects of the forecast, as will be discussed below.

Figure 7. Reliability diagrams for (A) meso-alpha, (B) meso-beta, and (C) meso-gamma scales and
corresponding sharpness plots for (D) meso-alpha, (E) meso-beta, and (F) meso-gamma scales. A
“no-skill” line halfway between perfect reliability and the climatological base rate is also plotted
for reference. Reliability diagrams for meso-beta and meso-gamma are not full diagrams given the
low-probability nature of the contour plots at these scales.

Figure 6c summarizes the results for the SPMP ensembles. At the meso-alpha scale,
ARW-MP generally becomes more skillful as the lead time increases with statistically
significant differences after the 6–8 h forecast bin. The improved skill for ARW-MP again
corresponds to fewer high (near-100%) probability objects (Figure 7d), which have poor
reliability (Figure 7a). Furthermore, the object probabilities are more evenly distributed for
the ARW-MP ensemble, which is indicative of improved spread in the storm morphology
ensemble forecasts. Similarly, meso-beta and meso-gamma scale verification shows an
ARW-MP advantage at all lead times (Figure 6c), which is consistent with both improved
reliability and resolution (Figure 7b,c). Neighborhood-based verification shows similar
results to OBPROB, with ARW-MP increasing in relative skill as the lead time increases at
the meso-alpha scale (Figure 6d) and uniformly greater skill for ARW-MP on meso-beta
and meso-gamma scales (Figure 6d). A notable difference between the neighborhood-based
and OBPROB verification is associated with the changing of the convective organization
scale. For object-based results, ARW-MP shows the most benefit as the scale increases,
while neighborhood-based results show that ARW-MP is the most skillful as the scale
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decreases. The differing verification trends are suggestive of the neighborhood-based
method smoothing over convective scale features pertinent to the object-based verification,
particularly at large radii.

Figure 6c summarizes the results for the multi-model ensembles. Meso-alpha scale
OBPROB forecasts have greater skill with MM than NMMB at all forecast times. Reliability
diagrams at the meso-alpha scale (Figure 7a) show greater forecast reliability for MM (red)
than NMMB (blue) for all forecast probability bins except 40 and 50%. The peak seen at
50% on the associated sharpness diagram (Figure 7d) indicates that clustering is likely why
MM forecasts struggle with intermediate probabilities (i.e., ARW-SP and NMMB members
agree upon separate respective convective events). Despite clustering issues, MM still
contains the most diverse distribution of forecasts, which is depicted by a more evenly
distributed sharpness plot (Figure 7d). At smaller convective organization scales, the
results show statistically insignificant probabilistic differences in ensemble performance,
except for the first bin at the meso-beta scale. Increased sample sizes from additional
cases are likely needed to reveal any impacts of multi-model ensemble design on the
smaller scale object-based probabilistic forecast skill. For neighborhood-based verification
(Figure 6f) at large radii and convective organization, MM significantly improves over
NMMB, with the greatest skill increases also shown at early lead times. For neighborhood
radii corresponding to storms organized at multi-cell and single-cell scales, the advantage
of MM is statistically significant.

Figure 6g summarizes the results for the MPMM ensembles. At the meso-alpha
scale, MM has greater skill than ARW-MP except for the 15–17 h forecast bin. However,
only the 3–5 forecast hour bin difference is statistically significant. Reliability diagrams
for the meso-alpha scale (Figure 7a) also indicate improved reliability and resolution for
MM. Multi-cell objects also were forecasted better by MM than ARW-MP, with statistical
significance in four forecast bins. Single-cell object skill differences only show a significant
advantage for MM in the 15–17 h forecast bin. Neighborhood-based verification shows
uniform and significant skill advantages for MM over ARW-MP, with the exception of the
0–2 forecast hour bin at a radius of 16, (Figure 6h). Furthermore, NMEP verification shows
MM successively improving upon ARW-MP forecasts as the lead time increases, with the
final forecast bin at a radius of 16 showing the greatest improvement.

4.2. Subjective Evaluation

Subjective evaluation of object-based results is performed to better understand specific
physical differences responsible for objective verification discrepancies, with a focus on
the meso-alpha scale objects. Such objects are largely responsible for widespread severe
weather events and are the most unique aspect of the OBPROB method. A representative
case study from 16 May 2015 (hereafter M16) is used for this subjective evaluation. Due
to the strong synoptic scale forcing on this case, initial supercellular dryline convection in
the southern plains quickly grew upscale into a north–south oriented squall line. Multiple
broken convective segments associated with the squall line encompassed a rather expansive
region, extending from southern Texas through Iowa and Minnesota, allowing for increased
variability among ensemble forecasts. Furthermore, much of the convection was of severe
caliber. Official filtered SPC storm reports resulted in 50 tornado reports, 140 wind reports,
and 42 hail reports, for a total of 232 severe weather reports.

Valid at 11 Z on 17 May 2015, observation objects (Figure 8i) depict multiple broken
linear segments in the overarching system. With two meso-alpha scale (maroon) objects
in southern Texas, another near the Dallas, Fort Worth area, and a fourth in southwest
Arkansas, much of the stronger storms at this analysis time are located in southern portions
of the synoptic scale system, while northern segments into Missouri and Iowa have begun
to deteriorate if they have not already. Comparisons of the observed storm morphology
structure to SMSP ensemble forecasts in Figure 8a (ARW-SP) vs. Figure 8b (NMMB) is
consistent with the objective verification for this case (Figure 9). The ARW-SP advantage
over NMMB at early forecast times is related to the greater diversity of probabilistic
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forecast objects with ARW-SP, indicating a better spread of storm mode and morphology
in the ARW-SP ensemble. In contrast, NMMB forecasts display over-confidence in storm
morphology forecasts in southwest Arkansas and central Texas. ARW-SP does also have
some overconfident object probabilities, including extending the strong convective objects
into Missouri (Figure 8a) well after these segments decayed in observations (Figure 8i).
This over-forecasting of the northern extensions of north–south oriented squall lines is
seen consistently in other case studies as well, indicating a systematic ensemble bias in
storm morphology.

Figure 8. OBPROB plots for ensemble-to-ensemble comparisons from the 16 May 2015 case study,
valid at 01 Z. Each ensemble-to-ensemble comparison is organized by column: SMSP (A,B), SPMP
(C,D), MMSM (E,F), and MPMM (G,H). Objects with transparency of 1.0 are matched to observations,
and objects with 0.5 transparency are not. As in Figure 4, observation plot (I) object colors indicate a
convective scale category.
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Figure 9. As in Figure 6, except for the 16 May 2015 case study. Statistical significance is not plotted due to data being
representative of one case. Left column: Object-based Brier score averaged difference over all cases based on lead time and
binned every three forecast hours for (A) SP vs. NMMB, (C) MP vs. SP, (E) MM vs. NMMB, and (G) MM vs. MP. Values
shown are subtracted where red indicates added skill and blue indicates negative respective skill for the first ensemble
listed in the title. Overlay p-value colors indicate the presence of statistical significance (green) at the 80% confidence level.
Right column: Same as the left column except for neighborhood-based results for (B) SP vs. NMMB, (D) MP vs. SP, (F) MM
vs. NMMB, and (H) MM vs. MP. Meso-alpha, beta, and gamma correspond to a radius of 16, 8, and 4, respectively.

Corresponding M16 OBPROB plots for ARW-SP and ARW-MP are located in Figure 8c,d,
respectively. Justified by the M16 SPMP verification (Figure 9b), physical differences between
ARW-SP and ARW-MP for the M16 case (Figure 8c,d) are also representative of the objective
results and systematic results described above (Figure 7c). In particular, ARW-MP has better
probabilistic forecasts than ARW-SP at middle and late lead times. The ARW-MP advantage is
reflected in the single, matching 100% probability object associated with observed convection
in Arkansas, and a decrease in probabilities for Texas convection from 100% in ARW-SP to
10% and 70%. Thus, the greater spread in ARW-MP effectively distinguishes which forecast
environments provide high confidence in storm mode and morphology from environments
providing lower confidence. This difference is also representative of other subjectively
evaluated cases (not shown).

Forecast hour 12 of the M16 case (Figure 9c) is representative of the systematic results
for MMSM, with MM showing greater skill than NMMB. The MM forecast advantage in
the M16 cases (Figure 8e) is related to an increase in the forecast diversity when compared
to NMMB forecasts (Figure 8f). The MM forecast not only increases spread compared to
NMMB but also decreases the over-confident high probabilities produced by constituent
ARW members in northern Missouri and south–central Texas. Therefore, MM effectively
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adjusts for individual model biases through decreases in probabilities of northern bias
objects from ARW while providing forecast spread that is absent in NMMB.

For the MPMM comparison, forecast hours 12–14 in the M16 case are particularly
representative of the systematic improvements found at forecast hours 3–5, with MM largely
improving upon the skill from ARW-MP. Although occurring at a later time in the M16
case, the M16 case is used to demonstrate this difference in order to minimize the number
of cases studies presented in this paper. The M16 case as a whole shows that uncertainty is
better sampled in MM than ARW-MP. For example, for south–central Texas convection, MM
generates more forecast diversity with three objects of 70, 20, and 10% probability compared
to the single, non-matched 70% object in ARW-MP. While the 10% MM object matches to
observations instead of the 70% object, the increased member-to-member diversity still
results in skill improvement over the ARW-MP forecast for south–central Texas convection.
The M16 and other cases revealed that unlike ARW-MP, the highest probability objects in
MM are mainly confined to the earliest lead times, indicating a better representation of
growth of uncertainty as the forecast lead time increases in MM.

4.3. Comparison to NMEP

In contrast to the OBPROB result for SMSP (Figure 9a), NMEP verification for the
M16 case study shows greater skill for NMMB than ARW-SP (Figure 9e). Subjective
evaluation of the NMEP plots for ARW-SP and NMMB (Figure 10a,b) show that the
verification differences correspond to the pronounced extension of northward biased
probabilities in ARW-SP well into Iowa, leading to poorer NMEP verification than NMMB.
This contrasts with northward biased object probabilities that only extend into northern
Missouri. Furthermore, the insufficient object-based forecast spread seen for NMMB is
not apparent in NMEP results. The different OBPROB and NMEP results for this case are
explained by the fact that generally better forecasts of mesoscale precipitation location do
not necessarily imply that storm morphology forecasts will also be more skillful.

A prime advantage of object-based techniques is their ability to quantify convective
scale features that neighborhood-based methods typically smooth out. The NMEP com-
parison of ARW-SP and ARW-MP ensembles for the M16 case is shown in Figure 10c,d.
For ARW-SP, a high probability contour reaches from central Iowa into northern Texas
continuously, indicating no sections of lower probabilities along the way. Contrarily,
object-based plots (Figure 8a) of the same forecast indicate multiple objects of varying
probability through this region. The fact that NMEP and OBPROB comparisons can give
different conclusions about the relative performance of these ensembles for this case further
demonstrates the different sensitivity of OBPROB and NMEP. In particular, distinct storm
morphologies are smoothed over in NMEP in favor of a focus on mesoscale regions of
precipitation rather than storm morphology.

The impacts of separating objects based on convective organization scale versus sim-
ply increasing by neighborhood radius can be seen in Figure 10e,f. Verification results from
both techniques indicate that MM contains superior storm morphology and mesoscale
precipitation location forecasts (Figure 9c,g); however, the agreement in verification is
impacted through separate aspects of the forecast. Aside from being hindered from higher
probabilities located in Iowa associated with constituent ARW members, MM precipita-
tion forecasts (Figure 10e) are largely comparable from large-scale convective systems in
Arkansas and Texas compared to NMMB (Figure 10f). However, after the consideration of
probabilities associated with smaller scale convective/stratiform precipitation in Nebraska
and South Dakota, it is apparent that the high-probability NMMB forecasts in this region
negatively affected the overall verification. Although it may not be a sole reason for the
final ensemble performance, the presence of single and multi-cell convection still impacts
neighborhood-based forecast verification at large radii. In turn, comparisons between
OBPROB and NMEP forecasts show that simple increases in neighborhood radii do not
necessarily correlate to an increase in focus on larger convective organization. In other
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words, the object-based categorizing by spatial scale of organization more cleanly separates
forecast differences on different scales than simply adjusting the neighborhood radius.

Figure 10. As in Figure 8, but for NMEP plots with a radius of 16 grid points. Each ensemble-
to-ensemble comparison is organized by column: SMSP (A,B), SPMP (C,D), MMSM (E,F), and
MPMM (G,H).
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Analysis of NMEP plots associated with the fourth ensemble-to-ensemble comparison
(MPMM) indicate yet another difference between neighborhood and object-based methods.
Figure 10g,h illustrate the impact of non-convective stratiform precipitation on the MM
vs. ARW-MP verification in NMEP and OBPROB. While observation contours extend
into Missouri and Illinois, precipitation in these regions at this time no longer reflects
organized convection due to system decay and transition to stratiform precipitation. The
influence of stratiform precipitation on NMEP verification bolsters the argument that these
verification techniques and their results are complementary and together give a more
complete understanding of forecast differences than either method on its own.

5. Discussion and Conclusions

CAEs can provide probabilistic information about forecasted storm mode and mor-
phology through the depiction of convective initiation location and storm evolution. In
limited studies, the impacts of CAE design on probabilistic forecast skill have primarily
focused on spatial coverage of precipitation through neighborhood-based methods rather
than explicit verification of storm morphology. Studies that have evaluated CAE storm
morphology forecasts have relied on deterministic forecasts or subjective evaluation rather
than objective evaluation of probabilistic storm morphology forecasts. The usefulness
of defining optimal ensemble design in terms of predicted storm mode is rooted in the
fact that certain storm modes are associated with distinct severe weather threats. There-
fore, through better understanding of optimal design, CAEs can become more valuable
in convective forecasting settings. To address the impacts that ensemble design has on
the forecasted storm mode and morphology, an innovated OBPROB technique is applied
to four ensemble-to-ensemble comparisons over 10 retrospective forecast cases. Several
innovations of the OBPROB method since [18] are introduced in the present study, in-
cluding a model bias adjustment based on reflectivity percentiles analysis, the filtering
of stratiform observation objects, and the scale separation of objects based on convective
organization (i.e., single-cell, multi-cell and mesoscale organized). The classification of
objects ensured that the verification process was aligned with the predictability expected at
each respective scale.

For the first ensemble-to-ensemble comparison (SMSP), objective and subjective ver-
ification suggests that model and physics scheme choices most prominently affect the
upscale growth of convective systems. Subjective analysis of OBPROB showed that the
statistically significant probabilistic improvements from ARW-SP at early lead times were
related to both probabilistic distributions of objects and actual storm morphology forecasts.
Compared to ARW-SP, NMMB forecasts had insufficient spread, leading to high probability
objects that were not matched to an observed object and thus poorer verification. In terms
of storm morphology, NMMB struggled to grow single-cell and multi-cell objects upscale,
resulting in a smaller horizontal scale of linear systems compared to ARW-SP observations.

For SPMP forecasts, objective and subjective verification are consistent in that as
lead time increases, a multi-physics ensemble design becomes increasingly beneficial.
Reinforced by statistically significant probabilistic skill increases from ARW-MP, objective
improvements were manifested in ARW-MP member-to-member diversity. With larger
spread generated from multiple physics schemes, ARW-MP better distinguished which
environments provide high confidence in storm morphology forecasts and which contained
larger uncertainty.

The SM versus MM comparison suggests that the greatest benefit of MM is realized
at the mesoscale organized scale. Although the addition of multiple dynamical cores
improved ensemble reliability and resolution, objective results were highlighted by sta-
tistically significant improvements above the 99% confidence level at early lead times.
Subjective analysis of the M16 case study demonstrated increased skill that resulted from
the relative bias reduction from each constituent model as MM increases forecast spread,
lacking in NMMB forecasts while reducing the northern bias associated with ARW mem-
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bers. Thus, MM effectively takes skillful portions from each respective model forecast,
leading to increased sampling of initial forecast uncertainties in terms of storm morphology.

A comparison of the probabilistic verification of meso-alpha storm morphology fore-
casts generated by MM versus ARW-MP was somewhat limited by the sample size, since
statistically significant MM advantages were only seen at the 3–5 forecast hour bin. While
MM did generally improve reliability and resolution, the clustering of forecasts was one
undesirable quality of MM. Subjectively, the skill differences corresponded to a decrease
in unmatched high probability objects in MM compared to MP. This reduction showed
that MM better samples early lead time forecast uncertainty, but it also demonstrated that
MM generates meaningful spread not found from early lead times in ARW-MP. Therefore,
the multi-model forecasts better represented how forecast uncertainty and diversity grew
during the forecast, with very high probability objects confined mostly to early in the
forecast period.

Supplemental to the mesoscale-organized convection, objective verification of multi-
cell and single-cell objects was also performed. For SMSP ensembles, NMMB forecasts were
more skillful at multi-cell and single-cell scales, suggesting that while NMMB may struggle
to grow small-scale objects upscale, the approximate forecasted locations and intensities are
better ARW-SP. SPMP ensembles produced pronounced probabilistic differences at multi-
cell and single-cell scales, indicating that the addition of multiple physics parameterizations
not only improves large-scale storm morphology forecasts but also provides benefits for
approximate locations and intensities of multi-cell and single-cell objects. In contrast, aside
from the greater reliability from MM, advantages over NMMB were reduced at smaller
convective organization scales. In comparison to ARW-MP, MM produced a majority
of probabilistic skill improvements at multi-cell and single-cell scales, especially at the
meso-beta scale. While superior reliability and resolution were found for MM at the multi-
cell scale, the results reversed for single-cell objects as ARW-MP produced forecasts of
greater reliability and resolution. For both MMSM and MPMM, additional case studies to
enhance statistical significance are needed to effectively discern meaningful differences at
the meso-beta and meso-gamma scales.

Optimal methods of sampling the forecast uncertainty will likely require a combina-
tion of different strategies within the ensemble design [13,17,66,67]. While the results in the
present study were largely consistent with [17], several differences between the OBPROB
and NMEP verifications were noted. Subjective analysis bolstered previous studies’ conclu-
sions (e.g., [18,76]), as NMEP probability contours were shown to smooth out convective
scale details pertinent to the storm morphology forecast while also including stratiform
precipitation features that were de-emphasized in OBPROB. Furthermore, NMEP plots
revealed that verification at larger radii were still influenced by forecasts of small-scale
convective precipitation, supporting the claim that the OBPROB method is able to separate
objects of larger convective organization, and simple increases in neighborhood radii do
not necessarily correlate to an increase in focus on larger convective organization.

The main focus of this study was on the verification of convective objects through
forecasted reflectivity fields. Other atmospheric variables closely related to the forecasted
storm mode such as updraft helicity and the maximum estimated size of hail were not
analyzed. With additional cases to account for the decreased sample size as further restric-
tions are placed on storm objects (e.g., applying minimum threshold to updraft helicity or
hail size), future work should focus on partitioning ensemble storm morphology forecasts
based on more specific classification of storms (i.e., strongly rotating) and how ensembles
depict not only storm mode and morphology but also storm severity. The consideration of
additional cases in a long-term CAE may also enhance and reveal additional differences
that were not revealed or not statistically significant in the present study.
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